

蛋白质羰基含量检测试剂盒(微量法) (本试剂盒仅供科研使用)

产品包装

产品编号	产品名称	产品规格
YFX0266	蛋白质羰基含量检测试剂盒	100 管/48 样

产品内容

名称	规格	储存条件
提取液	液体 50mL ×1 瓶	4°C
试剂一	粉剂 0.1g×5 支, (使用前根据样品数,每支加 1mL 水震荡溶解后离心取上清使用,每支为 10 个样品用量)	4℃,避光
试剂二	液体 6mL×1 瓶	4℃,避光
试剂三	液体 6mL ×1 瓶	4°C
试剂四	液体 15mL ×1 瓶	4°C
试剂五	根据测定样品量,将乙酸乙酯和无水乙醇等体积混合(自备)。	
试剂六	液体 30mL ×1 瓶	4°C

一、产品说明

蛋白质羰基是多种氨基酸在蛋白质的氧化修饰过程中的早期标志,其含量高低表明 蛋白质氧 化损伤程度的大小,是衡量蛋白质氧化损伤的主要指标。

羰基与 2,4-二硝基苯肼反应生成红色 2,4-二硝基苯腙, 在 370nm 处有特征吸收峰。

二、自备材料

天平、恒温水浴锅、低温离心机、漩涡震荡仪、可见分光光度计/酶标仪、微量石英比色皿 /96 孔板、蒸馏水、无水乙醇、乙酸乙酯。

三、样本准备:

1、组织: 按照组织质量 (g): 提取液体积(mL)为 1: 5~10 的比例(建议称取约 0.1g 组织,加入 1mL 提取液)进行冰浴匀浆,于 4℃,4000g 离心 10min,取上清,加入 0.1mL 试剂一,室温放置 10min,4℃,10000g 离心 10min,取上清待测。

四、操作步骤

正式测定前,必需取 2-3 个预期差异较大的样本做预测定。

- 1、分光光度计或酶标仪预热 30min 以上,调节波长至 370nm,蒸馏水调零。
- 2、加样表

试剂名称(μL)	对照管	测定管		
上清液	60	60		
试剂二		120		
试剂三	120			
混匀, 37℃避光反应 1h。				
试剂四	150	150		

地址:南京市栖霞区迈皋桥创业园科技研发基地寅春路 18 号-A55 网址: w

电话: 025-82210064

网址: www.yfxbio.com 邮箱: service@yfxbio.com

RNA/DNA 提取,qPCR Master Mix, 抗体 ELISA 试剂盒, 生化检测试剂盒, 细胞株

静置 5min,4℃,12000rpm 离心 15min,弃上清,留沉淀。					
试剂五	300	300			
漩涡混匀,4℃,12000rpm 离心 10min,弃上清,留沉淀。					
试剂六	300	300			
漩涡混匀,37℃温育 15min,沉淀全部溶解后,4℃,12000rpm 离心 15min,取上清 200μL 于					
微量石英比色皿/96 孔板中, 试剂六调零, 测定 OD370。					

五、含量的计算

用微量石英比色皿测定的计算公式如下

1、按照组织样本蛋白浓度计算:

蛋白质羰基含量(μ mol/mg prot)= (OD_{370 测定管} $-OD_{370$ 测定管}) ÷ (ϵ ×d) ×V÷(V 样×Cpr)

- $= (OD_{370_{\text{Mpc}}} OD_{370_{\text{Mpc}}}) \div 4.4 \div Cpr.$
- 2、按照组织样本鲜重计算

 $= (OD_{370$ 测定管 $-OD_{370$ 对照管 $) \div 4 \div W$ 。

ε: 蛋白质羰基消光系数, 22 L/μmol/cm; d: 比色皿光径, 1cm; V样: 加入样本体积, 0.06 mL; V: 加入试剂六体积, 0.3 mL; V提取: 加入提取液及试剂一体积: 1.1mL; Cpr: 样本蛋白质浓度, mg/mL, W: 样本质量, g。

用96孔板测定的计算公式如下

1、按照组织样本蛋白浓度计算

蛋白质羰基含量(μ mol/mg prot)=($OD_{370_{\text{NB}}}$ $ODD_{370_{\text{NB}}}$ $ODD_{370_{\text{NB}}}$ $ODD_{370_{\text{NB}}}$ $ODD_{370_{\text{NB}}}$ $ODD_{370_{\text{NB}}}$ $ODD_{370_{\text{NB}}}$ $ODD_{370_{\text{NB}}}$ $ODD_{370_{\text{NB}}}$ $ODD_{370_{\text{NB}}}$ $ODD_{370_{\text{NB$

- $= (OD_{370 \text{Mpc}} OD_{370 \text{Mpc}}) \div 7.3 \div Cpr_{\circ}$
- 2、按照组织样本鲜重计算

蛋白质羰基含量($\mu mol/g$)=($OD_{370 \text{ 测定管}}$ - $OD_{370 \text{ NRE}}$)÷($\epsilon \times d$)×V÷(W×V 样÷V 提取)

= $(OD_{370 \, \text{测定管}} - OD_{370 \, \text{对照管}}) \div 6.7 \div W$ 。

ε: 蛋白质羰基消光系数, 22 L/μmol/cm; d: 比色皿光径, 0.6cm; V 样: 加入样本体积, 0.06 mL; V: 加入试剂六体积, 0.3 mL; V 提取: 加入提取液及试剂一体积: 1.1mL; Cpr: 样本蛋白质浓度, mg/mL, W: 样本质量, g。

六、注意事项

- 1、试剂一使用前根据要测定的样品数现配,配置好后 4℃保存,若变为黑色,不能使用。
- 2、试剂二见光易分解,反应需严格避光。